Acta Crystallographica Section E
Structure Reports Online

ISSN 1600-5368

Andrei S. Batsanov* and Joanna L. Hesselinkt

Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, England
† née Megson

Correspondence e-mail:
a.s.batsanov@durham.ac.uk

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.049$
$w R$ factor $=0.123$
Data-to-parameter ratio $=13.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

Norbornane-endo-cis-2,3-dicarboxylic acid

The structure of the title compound, $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{4}$, contains two independent molecules in the asymmetric unit, with an unusually strong twist around the norbornane $\mathrm{C} 2-\mathrm{C} 3$ bond.

Comment

The title compound, (I), alternatively called bicyclo[2.2.1]-heptane-endo-cis-2,3-dicarboxylic acid, was studied as part of a series of small-molecule models of organic polymers influencing the crystallization of inorganic salts, particularly CaCO_{3} (Megson, 1997; Feast et al., 2002).

(I)

Compound (I) was prepared following the usual route through 'kinetic' (at moderate temperature) Diels-Alder addition of cyclopentadiene to maleic anhydride, hydrolysis of the anhydride to form 2-norbornene-endo-cis-5,6-dicarboxylic acid, (II), and hydrogenation of the $\mathrm{C}=\mathrm{C}$ bond of the latter (Diels \& Alder, 1928; Alder \& Stein, 1933a,b). The only previous structural characterization of (I) was in the form of a copper complex of its monoanion (Geraghty et al., 1999). However, the precision of that structure is too low ($R=0.18$) to permit any meaningful comparison with the present one.

The asymmetric unit of (I) comprises two molecules, A and B (Fig. 1). Both show rather large torsion angles $\left(\mathrm{HO}_{2}\right) \mathrm{C}-$ $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C}\left(\mathrm{O}_{2} \mathrm{H}\right)$ of -18.4 (2) and -19.7 (2) ${ }^{\circ}$. Obviously, this can be attributed to the steric repulsion between cis-carboxylic acid groups. However, the corresponding torsion angles are much smaller in some closely related molecules, where the steric overcrowding must be comparable, viz. 6.2° in (II) (Bolte et al., 2000), 5.2° in its potassium salt (Cser \& Sasvari, 1976), $3.6(2)^{\circ}$ in the exo-cis isomer of (I) (Batsanov \& Hesselink, 2002b), 4.7 (2), 0.6 (2) and 6.3 (2) ${ }^{\circ}$ in the three independent molecules of the endo-cis isomer of (II) (Batsanov \& Hesselink, 2002a), 12.2 and 11.5° in the isostructural Mn and Co complexes, containing anions of (II) as monodentate ligands (Hartung et al., 1993), and 4.5° in the Mn complex with a bidentate dianion of (II), coordinated via both carboxylate groups (Devereux et al., 1995). A possible explanation is a peculiar orientation of the carboxylic acid groups in (I). In both independent molecules, one of the carboxyl $\mathrm{C}=\mathrm{O}$ bonds is almost eclipsed with the norbornane $\mathrm{C} 2-\mathrm{C} 3$ bond. Thus, a carbonyl O atom of one carboxylic acid group forms a short intramolecular contact with the C atom of

Received 16 October 2002 Accepted 28 October 2002 Online 8 November 2002

Dicarboxylic Diels-Alder products, Part 3. For Part 2, see Batsanov \& Hesselink (2002b).

Figure 1
The independent molecules, A and B, in the structure of (I), showing displacement ellipsoids at the 50% probability level, hydrogen bonds (dashed lines) and short intramolecular $\mathrm{O} \cdots \mathrm{C}$ contacts (dotted lines).

Figure 2
Hydrogen bonding in the structure of (I). [Symmetry codes: (i) $1-x$, $1-y, 1-z$; (ii) $x, \frac{1}{2}-y, z-\frac{1}{2}$; (iii) $x, \frac{1}{2}-y, z+\frac{1}{2}$; (iv) $1-x, y+\frac{1}{2}, \frac{3}{2}-z$; (v) $1-x, y+\frac{1}{2}, \frac{1}{2}-z$.]
the other carboxylic acid group, viz. O2 $\cdots \mathrm{C} 9=2.694$ (2) \AA and $\mathrm{O} 14 \cdots \mathrm{C} 18=2.762(2) \AA$, much shorter than the normal van der Waals $\mathrm{O} \cdots \mathrm{C}$ contact distance of $3.24 \AA$ (Rowland \& Taylor, 1996). The conformation of (II) is somewhat similar, but the corresponding $\mathrm{O} \cdots \mathrm{C}$ contact is much longer, $2.92 \AA$. In other analogues (see above), carboxylic acid groups are inclined with respect to the $\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 3 / \mathrm{C} 4$ plane in the same direction, in a 'propeller' conformation.

Molecules A and B are linked by a pair of hydrogen bonds, as shown in Fig. 1. The other carboxylic acid group of molecule B forms a similar pair of hydrogen bonds with its inversion equivalent, thus forming an $A \cdots B \cdots B^{\mathrm{i}} \cdots A^{\mathrm{i}}$ tetramer (symmetry code as in Fig. 2). The remaining carboxylic acid group of molecule A adopts a less common anti conformation [the $\mathrm{O} 2=\mathrm{C} 8-\mathrm{O} 1-\mathrm{H} 01$ torsion angle is $178(3)^{\circ}$], and forms, with its equivalents (related by the c-glide plane), an infinite chain of hydrogen bonds $-\mathrm{H} 01 \cdots \mathrm{O} 2=\mathrm{C} 8-\mathrm{O} 1-$ $\mathrm{H} 01 \cdots \mathrm{O} 2=\mathrm{C} 8-$, running parallel to the c axis. The hydrogen bonds of the latter type link the tetramers into a layer, parallel to the crystallographic (100) plane and roughly perpendicular to the longest dimension of the tetramer itself.

Experimental

Hydrogen was introduced, with stirring, to a mixture of (II) (0.66 g , 4 mmol), palladium on carbon ($5 \% \mathrm{Pd}, 100 \mathrm{mg}$) and acetic acid $(10 \mathrm{ml})$. The catalyst was filtered off and the solvent removed using a
rotary evaporator. The product was recrystallized from doubly distilled water, giving colourless crystalline (I) in 88% yield (0.58 g , 3 mmol). Single crystals of (I), suitable for X-ray study, were grown from ethyl acetate. The melting point of (I) agreed with that (433434 K) quoted in the literature (Alder \& Stein, 1933b).

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{4}$
$M_{r}=184.19$
Monoclinic, $P 2_{d} / c$
$a=20.737$ (5) A
$b=9.310$ (2) \AA
$c=9.003(2) \AA$
$\beta=92.59$ (1) ${ }^{\circ}$
$V=1736.4$ (7) \AA^{3}
$Z=8$
$D_{x}=1.409 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 489
reflections
$\theta=7.5-20.7^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=150(2) \mathrm{K}$
Prism, colourless
$0.45 \times 0.35 \times 0.15 \mathrm{~mm}$

Data collection

SMART 1K CCD area-detector
diffractometer
ω scans
Absorption correction: none
12920 measured reflections
4594 independent reflections

$$
\begin{aligned}
& 3553 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.049 \\
& \theta_{\max }=29.0^{\circ} \\
& h=-27 \rightarrow 28 \\
& k=-9 \rightarrow 12 \\
& l=-12 \rightarrow 11 \\
& \\
& \\
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0419 P)^{2}\right. \\
& \quad+0.9532 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.32 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.35 \mathrm{e}^{-3}
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.123$
$S=1.14$
4594 reflections
331 parameters
All H -atom parameters refined

Table 1

Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

C1-C7	$1.536(2)$	C11-C12	$1.534(2)$
C1-C6	$1.537(2)$	C11-C17	$1.539(2)$
C1-C2	$1.563(2)$	C11-C16	$1.545(2)$
C2-C8	$1.503(2)$	C12-C18	$1.506(2)$
C2-C3	$1.566(2)$	C12-C13	$1.563(2)$
C3-C9	$1.505(2)$	C13-C19	$1.505(2)$
C3-C4	$1.537(2)$	C13-C14	$1.565(2)$
C4-C7	$1.539(2)$	C14-C17	$1.537(3)$
C4-C5	$1.543(2)$	C14-C15	$1.538(3)$
C5-C6	$1.559(2)$	C15-C16	$1.552(3)$
C8-O2	$1.215(2)$	C18-O12	$1.222(2)$
C8-O1	$1.329(2)$	C18-O11	$1.318(2)$
C9-O4	$1.2251(19)$	C19-O14	$1.219(2)$
C9-O3	$1.3222(19)$	C19-O13	$1.3196(19)$
C7-C1-C6	$100.61(13)$	C12-C11-C17	$99.09(13)$
C7-C1-C2	$101.16(12)$	C12-C11-C16	$110.36(14)$
C6-C1-C2	$110.15(13)$	C17-C11-C16	$102.59(14)$
C8-C2-C1	$110.42(13)$	C18-C12-C11	$116.81(14)$
C8-C2-C3	$115.75(13)$	C18-C12-C13	$119.03(13)$
C1-C2-C3	$102.41(12)$	C11-C12-C13	$103.21(12)$
C9-C3-C4	$118.51(13)$	C19-C13-C12	$116.71(13)$
C9-C3-C2	$116.95(13)$	C19-C13-C14	$110.69(14)$
C4-C3-C2	$103.27(12)$	C12-C13-C14	$102.03(13)$
C3-C4-C7	$99.07(12)$	C17-C14-C15	$100.43(14)$
C3-C4-C5	$111.10(13)$	C11-C14-C13	$102.20(14)$
C7-C4-C5	$102.05(13)$	C15-C14-C13	$109.31(14)$
C4-C5-C6	$103.35(13)$	C14-C15-C16	$102.57(14)$
C1-C6-C5	$102.86(13)$	C11-C16-C15	$103.38(14)$
C1-C7-C4	$94.67(12)$	C14-C17-C11	$94.23(13)$
O2-C8-C2-C3	$-18.6(2)$	O12-C18-C12-C13	$129.44(17)$
C8-C2-C3-C9	$-18.4(2)$	C18-C12-C13-C19	$-19.7(2)$
C2-C3-C9-O4	$124.25(17)$	C12-C13-C19-O14	$-12.6(2)$

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 01 \cdots \mathrm{O} 2^{\text {ii }}$	0.88 (3)	1.85 (3)	2.7371 (19)	177 (3)
O3-H03 \cdots O14	0.96 (3)	1.74 (3)	2.6996 (17)	174 (3)
O11-H011 \cdots O12 ${ }^{\text {i }}$	0.94 (3)	1.69 (3)	2.6222 (18)	175 (3)
O13-H013 . ${ }^{\text {O } 4}$	0.92 (3)	1.72 (3)	2.6294 (18)	170 (3)

All H atoms were refined isotropically; $\mathrm{Cs} p^{3}-\mathrm{H}$ bond lengths were in the range 0.96 (2)-1.02 (2) \AA.

Data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

The authors thank Professor W. J. Feast for fruitful advice.

References

Alder, K. \& Stein, G. (1933a). Ann. Chem. 504, 205-215.
Alder, K. \& Stein, G. (1933b). Ann. Chem. 504, 216-257.
Batsanov, A. S. \& Hesselink, J. L. (2002a). Acta Cryst. E58, o1272-o1274.
Batsanov, A. S. \& Hesselink, J. L. (2002b). Acta Cryst. E58, o1275-o1276.
Bolte, M., Degen, A. \& Egert, E. (2000). Acta Cryst. C56, 1338-1342.
Bruker (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Cser, F. \& Sasvari, K. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 478-480.
Devereux, M., Curran, M., McCann, M. \& McKee, V. (1995). Polyhedron, 14, 2247-2253.
Diels, O. \& Alder, K. (1928). Ann. Chem. 460, 98-122.
Feast, W. J., Hesselink, J. L., Khosravi, E. \& Rannard, S. P. (2002). Polym. Bull. In the press.
Geraghty, M., Sheridan, V., McCann, M., Devereux, M. \& McKee, V. (1999). Polyhedron, 18, 2931-2939.
Hartung, H., Baumeister, U., Kaplonek, R. \& Fechtel, G. (1993). Z. Anorg. Allg. Chem. 619, 1196-1202.
Megson, J. L. (1997). PhD Thesis, Durham University, England.
Rowland, R. S. \& Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.
Siemens (1995). SMART and SAINT. Versions 4.050. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

